10 research outputs found

    Statefinder diagnosis and the interacting ghost model of dark energy

    Full text link
    A new model of dark energy namely "ghost dark energy model" has recently been suggested to interpret the positive acceleration of cosmic expansion. The energy density of ghost dark energy is proportional to the hubble parameter. In this paper we perform the statefinder diagnostic tool for this model both in flat and non-flat universe. We discuss the dependency of the evolutionary trajectories in srs-r and qrq-r planes on the interaction parameter between dark matter and dark energy as well as the spatial curvature parameter of the universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in srs-r and qrq-r planes for the best fit values of the cosmological parameters and compare the interacting ghost model with other dynamical dark energy models. We show that the evolutionary trajectory of ghost dark energy in statefinder diagram is similar to holographic dark energy model. It has been shown that the statefinder location of Λ\LambdaCDM is in good agreement with observation and therefore the dark energy models whose current statefinder values are far from the Λ\LambdaCDM point can be ruled out.Comment: 23 pages, 6 figure

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    Modified Holographic Dark Energy in Non-flat Kaluza-Klein Universe with Varying G

    Full text link
    The purpose of this paper is to discuss the evolution of modified holographic dark energy with variable GG in non-flat Kaluza-Klein universe. We consider the non-interacting and interacting scenarios of the modified holographic dark energy with dark matter and obtain the equation of state parameter through logarithmic approach. It turns out that the universe remains in different dark energy eras for both cases. Further, we study the validity of the generalized second law of thermodynamics in this scenario. We also justify that the statefinder parameters satisfy the limit of Λ\LambdaCDM model.Comment: 15 pages, 4 figure

    Two- and three-pion quantum statistics correlations in Pb-Pb collisions at root S-NN=2.76 TeV at the CERN Large Hadron Collider

    No full text
    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at root S-NN = 2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23% +/- 8%

    Two-and three-pion quantum statistics correlations in Pb-Pb collisions at root S-NN=2.76 TeV at the CERN Large Hadron Collider

    No full text
    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at root S-NN = 2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23% +/- 8%

    J/\u3a8 production and nuclear effects in p-Pb collisions at 1asNN=5.02 TeV

    No full text
    Inclusive J/\u3a8 production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy 1asNN = 5.02TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains 2.03 < ycms < 3.53 and ?4.46 < ycms < ?2.96, down to zero transverse momentum, studying the \u3bc+\u3bc? decay mode. In this paper, the J/\u3a8 production cross section and the nuclear modification factor RpPb for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/\u3a8 yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results

    Measurement of charged jet suppression in Pb-Pb collisions at root s(NN)=2.76 TeV

    No full text
    20143NSFC; National Natural Science Foundation of China; Helmholtz Associatio

    Galaxy Alignments: An Overview

    No full text
    corecore